§2025-01-29

¶ verify jetpack6.2 installation using python

  1. conda activate
(base) alexlai@jetson:~$ conda activate RStudio                                                                                                                                                            
(RStudio) alexlai@jetson:~$ python --version
Python 3.10.16                                                                                                                                                                                              
(RStudio) alexlai@jetson:~$ R --version
R version 4.2.2 (2022-10-31) -- "Innocent and Trusting"                                                                                                                                                     
Copyright (C) 2022 The R Foundation for Statistical Computing                                                                                                                                               
Platform: aarch64-conda-linux-gnu (64-bit)                                                                                                                                                                  
                                                                                                                                                                                                            
R is free software and comes with ABSOLUTELY NO WARRANTY.                                                                                                                                                   
You are welcome to redistribute it under the terms of the                                                                                                                                                   
GNU General Public License versions 2 or 3.                                                                                                                                                                 
For more information about these matters see                                                                                                                                                                
https://www.gnu.org/licenses/.   
  1. veify install
(RStudio) alexlai@jetson:~$ dpkg -l | grep nvidia                                                                                                                                                           
ii  libnvidia-container-tools                    1.16.2-1                                    arm64        NVIDIA container runtime library (command-line tools)
ii  libnvidia-container1:arm64                   1.16.2-1                                    arm64        NVIDIA container runtime library
ii  nvidia-container-toolkit                     1.16.2-1                                    arm64        NVIDIA Container toolkit
ii  nvidia-container-toolkit-base                1.16.2-1                                    arm64        NVIDIA Container Toolkit Base
ii  nvidia-jetson-services                       2.0.0                                       arm64        NVIDIA Jetson Package
ii  nvidia-l4t-3d-core                           36.4.3-20250107174145                       arm64        NVIDIA GL EGL Package
ii  nvidia-l4t-apt-source                        36.4.3-20250107174145                       arm64        NVIDIA L4T apt source list debian package
ii  nvidia-l4t-bootloader                        36.4.3-20250107174145                       arm64        NVIDIA Bootloader Package
ii  nvidia-l4t-camera                            36.4.3-20250107174145                       arm64        NVIDIA Camera Package
ii  nvidia-l4t-configs                           36.4.3-20250107174145                       arm64        NVIDIA configs debian package
ii  nvidia-l4t-core                              36.4.3-20250107174145                       arm64        NVIDIA Core Package
ii  nvidia-l4t-cuda                              36.4.3-20250107174145                       arm64        NVIDIA CUDA Package
ii  nvidia-l4t-cuda-utils                        36.4.3-20250107174145                       arm64        NVIDIA CUDA utilities
ii  nvidia-l4t-cudadebuggingsupport              12.6-34622040.0                             arm64        NVIDIA CUDA Debugger Support Package
ii  nvidia-l4t-display-kernel                    5.15.148-tegra-36.4.3-20250107174145        arm64        NVIDIA Display Kernel Modules Package
ii  nvidia-l4t-dla-compiler                      36.4.3-20250107174145                       arm64        NVIDIA DLA Compiler Package
ii  nvidia-l4t-firmware                          36.4.3-20250107174145                       arm64        NVIDIA Firmware Package
ii  nvidia-l4t-gbm                               36.4.3-20250107174145                       arm64        NVIDIA GBM Package
ii  nvidia-l4t-graphics-demos                    36.4.3-20250107174145                       arm64        NVIDIA graphics demo applications
ii  nvidia-l4t-gstreamer                         36.4.3-20250107174145                       arm64        NVIDIA GST Application files
ii  nvidia-l4t-init                              36.4.3-20250107174145                       arm64        NVIDIA Init debian package
ii  nvidia-l4t-initrd                            36.4.3-20250107174145                       arm64        NVIDIA initrd debian package
ii  nvidia-l4t-jetson-io                         36.4.3-20250107174145                       arm64        NVIDIA Jetson.IO debian package
ii  nvidia-l4t-jetson-multimedia-api             36.4.3-20250107174145                       arm64        NVIDIA Jetson Multimedia API is a collection of lower-level APIs that support flexible application development.
ii  nvidia-l4t-jetsonpower-gui-tools             36.4.3-20250107174145                       arm64        NVIDIA Jetson Power GUI Tools debian package
ii  nvidia-l4t-kernel                            5.15.148-tegra-36.4.3-20250107174145        arm64        NVIDIA Kernel Package
ii  nvidia-l4t-kernel-dtbs                       5.15.148-tegra-36.4.3-20250107174145        arm64        NVIDIA Kernel DTB Package
ii  nvidia-l4t-kernel-headers                    5.15.148-tegra-36.4.3-20250107174145        arm64        NVIDIA Linux Tegra Kernel Headers Package
ii  nvidia-l4t-kernel-oot-headers                5.15.148-tegra-36.4.3-20250107174145        arm64        NVIDIA OOT Kernel Module Headers Package
ii  nvidia-l4t-kernel-oot-modules                5.15.148-tegra-36.4.3-20250107174145        arm64        NVIDIA OOT Kernel Module Drivers Package
ii  nvidia-l4t-libwayland-client0                36.4.3-20250107174145                       arm64        NVIDIA Wayland Package
ii  nvidia-l4t-libwayland-cursor0                36.4.3-20250107174145                       arm64        NVIDIA Wayland Package
ii  nvidia-l4t-libwayland-egl1                   36.4.3-20250107174145                       arm64        NVIDIA Wayland Package
ii  nvidia-l4t-libwayland-server0                36.4.3-20250107174145                       arm64        NVIDIA Wayland Package
ii  nvidia-l4t-multimedia                        36.4.3-20250107174145                       arm64        NVIDIA Multimedia Package
ii  nvidia-l4t-multimedia-utils                  36.4.3-20250107174145                       arm64        NVIDIA Multimedia Package
ii  nvidia-l4t-nvfancontrol                      36.4.3-20250107174145                       arm64        NVIDIA Nvfancontrol debian package
ii  nvidia-l4t-nvml                              36.4.3-20250107174145                       arm64        NVIDIA NVML Package
ii  nvidia-l4t-nvpmodel                          36.4.3-20250107174145                       arm64        NVIDIA Nvpmodel debian package
ii  nvidia-l4t-nvpmodel-gui-tools                36.4.3-20250107174145                       arm64        NVIDIA Nvpmodel GUI Tools debian package
ii  nvidia-l4t-nvsci                             36.4.3-20250107174145                       arm64        NVIDIA NvSci Package
ii  nvidia-l4t-oem-config                        36.4.3-20250107174145                       arm64        NVIDIA OEM-Config Package
ii  nvidia-l4t-openwfd                           36.4.3-20250107174145                       arm64        NVIDIA OpenWFD Package
ii  nvidia-l4t-optee                             36.4.3-20250107174145                       arm64        OP-TEE userspace daemons, test programs and libraries
ii  nvidia-l4t-pva                               36.4.3-20250107174145                       arm64        NVIDIA PVA Package
ii  nvidia-l4t-tools                             36.4.3-20250107174145                       arm64        NVIDIA Public Test Tools Package
ii  nvidia-l4t-vulkan-sc                         36.4.3-20250107174145                       arm64        NVIDIA Vulkan SC run-time package
ii  nvidia-l4t-vulkan-sc-dev                     36.4.3-20250107174145                       arm64        NVIDIA Vulkan SC Dev package
ii  nvidia-l4t-vulkan-sc-samples                 36.4.3-20250107174145                       arm64        NVIDIA Vulkan SC samples package
ii  nvidia-l4t-vulkan-sc-sdk                     36.4.3-20250107174145                       arm64        NVIDIA Vulkan SC SDK package
ii  nvidia-l4t-wayland                           36.4.3-20250107174145                       arm64        NVIDIA Wayland Package
ii  nvidia-l4t-weston                            36.4.3-20250107174145                       arm64        NVIDIA Weston Package
ii  nvidia-l4t-x11                               36.4.3-20250107174145                       arm64        NVIDIA X11 Package
ii  nvidia-l4t-xusb-firmware                     36.4.3-20250107174145                       arm64        NVIDIA USB Firmware Package
  1. Install PyCUDA:
(RStudio) alexlai@jetson:~$ pip3 install pycuda numpy
  1. test_cuda.py with pycuda
import pycuda.driver as cuda
import pycuda.autoinit

def main():
    print("CUDA Device Query (PyCUDA)")
    print("Detected {} CUDA Capable device(s)".format(cuda.Device.count()))

    for i in range(cuda.Device.count()):
        gpu = cuda.Device(i)
        print("Device {}: {}".format(i, gpu.name()))
        print("  Compute Capability: {}.{}".format(*gpu.compute_capability()))
        print("  Total Memory: {} MB".format(gpu.total_memory() // (1024 ** 2)))

if __name__ == "__main__":
    main()
  1. run
$ python3 test_cuda.py
CUDA Device Query (PyCUDA)
Detected 1 CUDA Capable device(s)
Device 0: Orin
  Compute Capability: 8.7
  Total Memory: 7619 MB
  1. using tensorflow
import tensorflow as tf

def main():
    print("TensorFlow version:", tf.__version__)
    print("Num GPUs Available:", len(tf.config.list_physical_devices('GPU')))

if __name__ == "__main__":
    main()
  1. test
$ python3 test_tensorflow.py 
TensorFlow version: 2.18.0
Num GPUs Available: 0      <--- not found


  1. using torch
$ pip install torch
(RStudio) alexlai@jetson:~/build/src$ python3 -c "import torch; print(torch.cuda.is_available())"
False